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Stokesian dynamics is used to simulate the dynamics of a monolayer of a suspension 
of bimodally distributed spherical particles subjected to simple shearing flow. 
Hydrodynamic forces only are considered. Many-body far-field effects are calculated 
using the inverse of the grand mobility matrix. Near-field effects are calculated from the 
exact equations for the interaction between two unequal-sized spheres. Both the 
detailed microstructure (e.g. pair-distribution function and cluster formation) and the 
relative viscosity are determined for bimodal suspensions having particle size ratios of 
2 and 4. The flow of an ‘infinite’ suspension is simulated by considering 25,49,64, and 
100 particles to be ‘one’ cell of an infinite periodic array. The effects of both the size 
ratio and the relative fractions of the different-sized particles are examined. When the 
area fraction, $a, is less than 0.4 the particle size distribution does not affect the 
calculated viscosity. For $a > 0.4, and for a fixed fraction of small spheres, the bimodal 
suspensions generally have lower viscosities than monodispersed suspensions, with the 
size of this effect increasing with 9,. These results compare favourably with experiment 
when $a and the volume fraction, $u, are normalized by the maximum packing values 
in two and three dimensions, respectively. At the microstructural level, viscosity 
reduction is related to the influence of particle size distribution on the average number 
of particles in clusters. At a fixed area fraction, the presence of smaller particles tends 
to reduce average cluster size, particularly at larger $a,  where significant viscosity 
reductions are observed. Since the presence of large clusters in monodispersed 
suspensions has been directly linked to high viscosities, this provides a dynamic 
mechanism for the viscosity reduction in bimodal suspensions. 

1. Introduction 
Determination of the rheological properties and other microstructural transport 

properties for suspensions of monodispersed spherical particles has been the 
principal goal of many theoretical and experimental studies. Such systems are often 
considered as providing models of many industrially important materials such as 
coal-water mixtures, paints, coatings, and polymer emulsions. In a somewhat smaller, 
but significant, class of suspensions, functional performance is linked to the total 
amount of solids. For example a typical hydroxy-terminated polybutadene solid rocket 
fuel consists of ammonium perchlorate and aluminium particles in a rubbery binder 
(Miller, Lee & Powell 1991). The total available energy for propulsion is directly linked 
to the amount of solids present. During processing, such a fuel is actually a highly 
loaded suspension having volume fractions exceeding the maximum random packing 
for monodispersed suspensions. As an example, the Advanced Solid Rocket Motor 
currently under development by the National Aeronautics and Space Administration 
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will contain over 75 Yo solids by volume. On a much smaller scale, dental pastes can 
also contain high volume loadings of a solid component such as crushed glass (Cheng 
et al. 1990). In such cases where high volume loadings are desired, the concomitant 
high viscosity is usually not favourable from a processing standpoint. However, high 
solids loadings can be attained with a small increase in viscosity using suspensions 
having a distribution of particle sizes rather than particles of similar sizes. From a 
practical and experimental standpoint, this effect is well-known. The purpose of this 
paper is to apply theoretical fluid mechanics and modern simulation techniques, 
namely Stokesian dynamics, to directly predict the observed viscosity reduction as well 
as the flow-induced microstructure. Our results apply to systems in which Brownian 
and surface forces are negligible and hydrodynamic forces dominate (Johma et al. 
1991). 

The first systematic study of the effect of modality on suspension rheology is due to 
Sweeny & Geckler (1954). A concentric cylinder viscometer was used to measure the 
viscosity of bimodally dispersed suspensions of glass spheres in an aqueous glycerol 
and zinc bromide medium. The size ratio, h (the ratio of the diameter of large spheres, 
d,, to the diameter of small spheres, ds), was varied from 1 to 20.76, with d, being fixed 
at 262 pm while d, was systematically reduced to 12 pm. The overall volume fraction 
in each suspension, y5v, was 0.55. The volume fraction of spheres having the smaller 
diameter, €&, was fixed with ,$ = 0.25. As h increased, the viscosity at low shear rates 
(i.e. the range of shear rates over which the viscosity is constant) decreased, until, for 
A = 20.76, the viscosity was less than 25 YO of that for a monodispersed suspension. 
Working at lower volume fractions, Eveson (1959) also used a Couette viscometer to 
measure the viscosity of bimodal suspensions of polymethyl methacrylate spheres with 
d, = 4.7 pm and d, = 190 and 390 pm. He observed a less than 5 ?Lo change in relative 
viscosity for volume fractions of solids as high as 0.20 when h d 8. He concluded that 
the reduction in relative viscosity for a bimodal suspension becomes significant, that is, 
reproducibly measurable, only when y5w > 0.175 and when h was the maximum used, 
A = 8. He also found that for q5v fixed, the viscosity decreased as f increased from zero, 
reached a minimum at some value of E less than or equal to 0.5 and then increased as 
c+ 1. 

Over a decade later, an extensive investigation of the rheological behaviour of 
multimodal suspensions of glass spheres was reported by Chong, Christiansen & Baer 
(1971). They used an orifice viscometer in which the suspensions are driven through an 
abrupt contraction. The pressure drop and flow rate were measured and used to 
calculate the viscosity. The advantage of such a system is that fluid layers do not form 
near the orifice walls. Such effects, which can also be interpreted as wall slippage, are 
observed when concentrated suspensions are tested in capillary and rotational 
viscometers. Figure 1 reproduces the principal results of their study which confirmed 
the earlier findings (Sweeny & Geckler 1954; Eveson 1959). It depicts the dependence 
of the relative viscosities of bimodal suspensions on the particle size ratios and the 
overall volume fraction with the fraction of small spheres of total solids being 
maintained at 0.25. Also given are data for suspensions of monodispersed spheres. At 
high volume fractions, near the maximum packing for monodispersed suspensions, 
bimodal suspensions show a dramatically lower viscosity than monodispersed 
suspensions. Above these volume fractions, where a ' suspension ' consisting of single- 
sized particles would appear to be a wet granular solid, a bimodal suspension can 
behave as a fluid having a relative viscosity, yr, of less than 100. The size of the viscosity 
reduction increases with y5w and with A. For example, at q5v = 0.58, the relative 
viscosities for suspensions with size ratio 1.0 (monodispersed), 2.1, 3.19, and 7.25 are 
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FIGURE 1 .  Dependence of relative viscosity on volume fraction and particle size ratio, A (from Chong 
etal. 1971): 0, monodispersed, A = 1; ., A = 2.1; a, A = 3.19; 0,  A = 7.25. The fraction of small 
spheres, 6, is fixed at 0.25. 

approximately 300, 80, 30, and 15 respectively. At q5u = 0.64, h = 1 and 2.1 data for y r  
are not given, implying that they could not be measured, while for h = 3.19 and 7.25, 
7,. z 300 and 30, respectively. 

Chong et al. (1971) recast their data, as well as those of Sweeny & Geckler (1954), 
in terms of the relative viscosity as a function of 6 for various h and q5u, see figure 2. In 
arriving at this reformulation, the original data were correlated using 

where q5g is the maximum packing in three dimensions, which besides the physical 
geometrical arrangement depends upon both h and 5. To construct figure 2, a value of 
h is chosen. Then, for each 6, #g is determined from empirical correlations and yr 
versus q5u is found. Repeating this procedure allows the dependence of rr upon ( to be 
ascertained. Equation (1.1) reduces to the Einstein equation as q5u + 0 if q5: = 0.60. For 
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bimodal suspensions, $2 was determined empirically using a graphical technique 
based upon the notion that vr approaches infinity as $v+$g (Chong et al. 1971). 
Figure 2 shows that there are parameter ranges where a small change in suspension 
composition, that is 5, causes a large variation in viscosity. However, for smaller size 
ratios and lower volume fractions, even relatively large changes in 6 cause little 
variation. Figure 2 also shows that the minimum viscosity of a bimodal system can be 
achieved with 25 % to 35 % small spheres. These results are supported by the recent 
study of Shapiro & Probstein (1992) who measured the random close-packing volume 
fractions for monomodal and bimodal suspensions ( A  = 2 and 4) as a function of 6. 
The curves for $: versus 5 are analogous to those shown in figure 2, but inverted. That 
is, the maximum $2 for a bimodal suspension may be achieved with 6 = 0.25 to 0.4. 
Overall their study strongly suggests that in bimodal suspensions, 7;lr at high volume 
fractions is directly linked to the value of $2 associated with a particular size ratio and 
small sphere fraction. 

Other studies have tended to support the earlier work while extending its range and 
identifying potential experimental pitfalls. Using a capillary viscometer, Goto & Kuno 
(1982, 1984) showed large decreases in the relative viscosity for bimodal suspensions 
even when 9, x 0.2. However, they attributed much of this reduction to particle-wall 
interactions. In particular, they found the largest reduction when dL was large relative 
to the diameter of the capillary. Storms, Ramarao & Weiland (1990) measured the 
viscosity for suspensions of bimodally distributed polymethyl methacrylate (PMMA) 
beads dispersed in silicone oil using an orifice viscometer similar to that of Chong 
et nl. (1971). As with the earlier study, their data apply at high PCclet numbers, 
0(106-107), but at sufficiently low shear rates that the viscosity is independent of shear 
rate. Here, the Peclet number, Pe is 6n,ua3j/kT, where p is the suspending fluid 
viscosity, a is the particle radius, .>' is the shear rate, k is Boltzmann's constant and T 
is temperature. They expanded the earlier work sufficiently to be able to quantitatively 
determine the effects of h and 6 upon the viscosity of bimodal suspensions. They 
proposed an expression of the form 

where R varies from 0.7 to 1.25 depending upon 6 and h and is tabulated in their 
paper; $2 is determined from a series of algebraic expressions that also depend upon 
6 and A. 

Poslinski et al. (1988) examined the rheology of suspensions of bimodal particles in 
a polybutene oil that is Newtonian at room temperature using a parallel-plate 
viscometer. All measured properties, including the shear viscosity, primary normal 
stress coefficient, dynamic viscosity, and storage modulus were lower for a bimodal 
suspension than for a suspension having a monomodal size distribution of particles. 

Finally, the most recent study dealing with bimodal suspensions of non-colloidal and 
non-Brownian particles is due to Shapiro & Probstein (1992). They used a Couette 
viscometer to determine the viscosity of monomodal and bimodal suspensions of glass 
beads (40-160 pm) in a 95 % glycerin/5 % water solution. To avoid wall slippage, they 
took measurements at low shear rates where the viscosity is independent of the shear 
rate, but the Peclet number is still large, O(107). They found differences in ?lr between 
the h = 1 suspensions and the bimodal case with h = 4 and 6 = 0.5 when $v 2 0.15. 

For suspensions having sufficiently high solids loading to make multimodal effects 
important, the experimental findings can be summarized in two parts. First, when #u 
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and 6 are fixed, vr depends upon h and decreases with increasing A. Second, when $v 
and h are fixed, 31, depends upon 5, decreasing as 5 increases from zero, reaching a 
minimum for 6 around 0.25 and increasing as 6 +. 1. 

Theoretically describing the effect of bimodal populations of spherical particles on 
the macroscopic rheology has only been attempted in the limiting case when the size 
ratio is large. Farris (1968) developed an ‘effective medium’ model in which the small 
particles in suspension were viewed as a continuum with respect to the larger ones. He 
showed that when h 2 10, it is possible to estimate the viscosity of a multimodal 
suspension from the viscosity-concentration behaviour of a monomodal suspension, 
considering the fine particles as a homogeneous phase. This model does not account for 
the fluid mechanical interactions and it does not attempt to elucidate microstructural 
information. The viscosity of a bimodal suspension of spheres is calculated by treating 
the mixture of fine particles and suspending fluid as a ‘homogeneous’ fluid. This 
comprises a volume 5 of suspending liquid and V ,  of fines and has a viscosity of 

71 = h ( A ) P ,  (1.3) 
where is the volume fraction of fines in the suspending fluid/fines mixture, 

and h is a function that is either determined empirically, theoretically or from 
simulations. The coarse particles are considered to be suspended in a ‘homogeneous’ 
fluid consisting of the fines and suspending fluid. The relative viscosity of this 
suspension is 

where q52 = ( 1  - Q q5v. A similar procedure can be followed for multimodal suspensions, 
in general (Farris 1968). 

More recently, Sengun & Probstein ( 1 9 8 9 ~ )  used a model similar to that of Farris 
(1968) to predict the rheological behaviour of stable slurries which were composed of 
a coarse fraction (100-300 pm) and a fine fraction in the colloidal size range (2-3 pm). 
They use a decomposition similar to (1.3)-(1.5), except that the viscosity can exhibit 
non-Newtonian, that is, shear thinning, effects due to the colloidal fraction. This is 
similar to the model of Chan & Powell (1984) that predicts the linear viscoelastic 
properties of suspensions of spheres in non-Newtonian fluids. 

When the size ratio is not large, particleparticle interactions must be directly 
considered in any theory of the rheology of bimodal suspensions. Large effects on the 
viscosity are found experimentally even when h z 3, in which case an effective medium 
theory would not be expected to hold. Further, since measured effects generally occur 
at high volume fractions, the theoretical construct must allow modelling under such 
circumstances. Dynamic computer simulation offers a powerful tool to study multi- 
modal suspensions of particles hydrodynamically interacting in the Stokes’ flow regime 
(Barnes, Edwards & Woodcock 1987). Macroscopic suspension properties, such as 
effective viscosity, sedimentation rate or self-diffusion coefficient can be determined 
through appropriate temporal and spatial averaging of microstructural information. 
One such technique, termed Stokesian dynamics (Brady & Bossis 1988), uses a 
molecular-type approach to follow the time evolution of the positions of particles in 
suspension undergoing an imposed flow. This technique, which is related to the 
multipole-moment method (Weinbaum, Ganatos & Yan 1990), has two singular 
features that enhance its ability to deal with highly concentrated suspensions : the 

71. = h(4J 31JP = h(4J  h ( 4 A  (1.5) 
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inversion of the grand mobility matrix to obtain the grand resistance tensor (which 
describes many-body interactions) ; and the inclusion of near-field lubrication effects. 
The grand mobility matrix, which describes the velocity disturbance produced by a few 
lowest-order multipoles representing each sphere, does not contain the reflections of 
the other spheres required to describe the screening effects associated with many-body 
interactions. Yet its inverse, the grand resistance matrix, appears to sum all the 
multiple reflections of these lowest-order multipoles. Durlofsky, Brady & Bossis (1987) 
computed the resistance interaction along the line of centres of two spheres and 
illustrated this important point, that is, the equivalence of inverting mobility matrix 
and summing reflected interactions. 

Lubrication forces between neighbouring spheres are calculated using the exact 
formulas for the interaction of two spheres. Far-field effects are then subtracted from 
these formulae to eliminate ' double accounting' of far-field effects which otherwise 
occurs due to their inclusion in the mobility matrix. Stokesian dynamics has elucidated 
several mechanisms in flows such as sedimentation and simple shearing. The results 
obtained so far using this method, however, are for monodispersed suspensions only. 

In this paper, we report upon both micro- and macro-rheological properties of 
suspensions of unequal-sized spheres that are determined using Stokesian dynamics. 
Following the procedure developed by Durlofsky et al. (1987), in $2 we present a 
general method for computing the hydrodynamic interactions among N spherical 
particles of two different sizes. We form the N-sphere mobility matrix for unequal-sized 
spheres in terms of a moment expansion, and adjust its invert for lubrication. We 
specialize these results to a monolayer of bimodal rigid non-Brownian, non-colloidal 
spheres in a simple shearing flow. Hence, our theory applies to the case Pe+oo. 
Equations are developed to compute the trajectory of the particles and the effective 
viscosity for bimodal suspensions from the instantaneous and time-averaged bulk 
stress (Batchelor 1970). In a monolayer, all particles lie in the same plane, the plane of 
shear. As discussed in Brady & Bossis (1985), examining a sheared monolayer rather 
than a full three-dimensional suspension minimizes the computation costs (reducing 
the number of degrees of freedom for each sphere from eleven to six) while preserving 
the essential physics in the plane of shear. 

In $ 3 we present simulation results for the detailed microstructure (pair-distribution 
function and cluster formation) and the macroscopic rheology (relative viscosity) of 
bimodal suspensions. Our numerical results suggest that the viscosity reduction in 
bimodal suspensions is linked to the influence of particle size distribution and the 
relative fractions of the two particle populations on cluster formation. At a fixed 
volume fraction, the presence of small spheres tends to reduce the average cluster size 
in a suspension. Since large clusters in monodispersed suspensions have been directly 
linked to high viscosities (Bossis & Brady 1989), this would provide a dynamic 
mechanism for the viscosity reduction in bimodal suspensions. We also compare our 
numerically determined suspension viscosities with experimental results. These 
comparisons illustrate the accuracy of the general method and also demonstrate the 
ability of the Stokesian dynamics to handle highly concentrated suspensions of 
unequal-sized spheres. Finally, we summarize our principal results in $4 and discuss 
possible extensions of the simulation method for bimodal suspensions, such as the 
inclusion of colloidal forces. 
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2. Method 
The application of the multipole-moment technique to Stokesian dynamics is 

discussed by Durlofsky et al. (1987) and Brady & Bossis (1988). Our intent is to develop 
this methodology further in order to calculate both the microscopic and macroscopic 
properties of suspensions of unequal-sized spheres. We consider a suspension of N 
spheres subject to a flow field having an undisturbed velocity U" with a corresponding 
rate of strain E". The system is finite and consists of two populations of rigid spheres. 
There are Nl type-a spheres having radii a and N ,  type+ spheres having radii b. These 
particles are small enough that the particle Reynolds numbers are much less than unity. 

To develop an evolution equation for the suspension microstructure, we follow 
Durlofsky et al. (1987) and write the resistance matrices RFU, RFE, Rsv, and R,, as 
part of a 'grand resistance' matrix, R. This permits the force and torque, F, and the 
stresslet, S, exerted by the spheres on the fluid to be related to the particle translational 
and rotational velocities, U, and the rate of strain associated with the imposed flow, 
E", using 

where 

For example, for N particles, U -  U" is a vector of dimension 6N that contains the 
translational and rotational velocities of all particles relative to the imposed flow at 
infinity and evaluated at the centres of the particles; E" is a vector of dimension 5N 
that gives the imposed rate of strain for each particle; F is a 6N vector that contains 
the force and torque exerted by the particles on the fluid; and, S has dimension 5N and 
consists of the particle stresslets. These stresslets result from the symmetric and 
traceless parts of the first moment of the force distribution integrated over the surfaces 
of the particles or, more physically, the contribution to the bulk stress due to the 
existence of the particles. The corresponding inverse or 'grand mobility' matrix, M, 
representation is 

For two unequal-sized spherical particles, the grand resistance and grand mobility 
matrices are known exactly for all centre-centre separations (Jeffrey & Onishi 1984; 
Jeffrey & Corless 1988; Corless & Jeffrey 1988; Kim & Karrila 1991 ; and Jeffrey 1992). 
For N unequal-sized spheres approximations must be made. 

2.1. Calculation of the grand mobility matrix: M" 
Using the multipole-moment method developed by Durlofsky et al. (1987), moments 
are taken of the boundary-integral representation of the velocity field for a bimodal 
suspension. The zeroth moment is the total force, while the first moment has both a 
symmetric and an antisymmetric part: the stresslet and torque, respectively. We 
truncate the expansion after the dipole terms while including two higher multipole 
contributions (due to a quadruple and an octupole) that result from the finite size of 
the spheres. The velocity field at any point in the fluid is then related to the forces, 
torques and stresslets exerted by the unequal-sized spheres on the fluid. The grand 
mobility matrix, M", is constructed using Faxtn's laws (Batchelor & Green 1972). It 
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relates the translational and angular velocities of each particle relative to the 
force/torque/stresslet of all N bimodally sized spheres through 

The elements of M" are given explicitly in the Appendix. In obtaining these 
expressions, we consider M" to be the far-field approximation to the interaction 
among the particles and include terms up to O(rP5),  where r would reflect a 
characteristic interparticle spacing. The procedure for inverting M" to obtain R is 
equivalent to solving the simultaneous equations (2.4) for the unknown forces, torques 
and stresslets when the velocities and the ambient rate of strain field are prescribed. 

2.2. Adjustment for near-Jield effects: lubrication 
The many-body approximation to the resistance matrix (i.e. the invert of M") still 
lacks near-field effects. These would only be reproduced upon inversion of the mobility 
matrix if all multipole moments were included. To incorporate such lubrication terms, 
we modify the resistance matrix to include the exact unequal-sized two-sphere 
formulae of Jeffrey & Onishi (1984); Jeffrey & Corless (1988); Corless & Jeffrey (1988); 
Jeffrey (1989); Kim & Karrila (1991); and Jeffrey (1992) for the two-body resistance 
matrix RZB. The modified grand resistance matrix is then written as 

R = (M")-' + R,, - R&, (2.5) 
where R;B represents the far-field effect of the two-body interaction, which must be 
subtracted so that it is not included twice in the computation. This is determined by 
inverting the two-sphere mobility matrix to the same level of approximation as M". 

2.3. Calculation of the particle trajectories and the suspension viscosity 
Using (2.5) with (2.1) and (2.2), one can calculate the motion of the particles with 
prescribed forces and torques in a linear shear flow. The final form of the velocity of 
the particles is given by 

Having found the velocities at a given instant, the particle paths are integrated using 
a predictor-corrector formula (Carnahan, Luther & Wilkes 1969). 

In order to determine the rheological properties, we must calculate the bulk stress, 
(C). The technique for calculating the average or macroscopic stress in homogeneous 
suspensions has been given by Batchelor (1970, 1977). Since we deal with purely 
hydrodynamic interactions for neutrally buoyant spheres, (2) here is the average over 
the volume V containing the N( = Nl + N,)  particles and is given by 

u- u" = R&F+ R, .' Em]. (2.6) 

(C) =I.T.+~,u€"+ (2.7) 

where 
N ,  N *  

SH = c sai+ c sai. 
i = l  i=l 

The isotropic term I.T. is of no importance to the rheology of incompressible 
suspensions. The total particle contributions to the mechanical stress due to the shear 
flow is S H .  The individual contributions, Sai, and Sai, are found by solving (2.1) and 
(2.2) for the unknown stresslets, 
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Here S = (Sal, . . . , SaN,, Spl. . . ., SbN2) is a column vector containing the N-particle 
stresslets. 

Our principal interest is in the relative viscosity of the suspension, yT, which is the 
viscosity of the suspension divided by the fluid viscosity. The suspension viscosity is 
calculated from the (x, y)-component of the stress in a simple shear flow with u," = yy .  
As with the grand resistance matrix, the stress is non-dimensionalized by 67c,ue3y, where 
e is a characteristic length that is the same throughout, for example, e = g(a+b). 
Hence, the relative viscosity is 

where 
For the monodispersed case, this result can be reduced to 

and $p are the volume fractions of the a-type and ,!?-type spheres, respectively. 

(2.10) 

Here, all lengths are non-dimensionalized by the particle radius a. 

2.4. Simulation of a sheared monolayer 
We have simulated the flow of a monolayer of unequal-sized (bimodal) rigid non- 
Brownian and non-colloidal spherical particles due to an imposed simple shearing 
flow. All particles lie in the plane of shear, the (x,y)-plane, and particle-particle 
interactions that result from the macroscopically imposed simple shearing flow all 
occur in this plane. The bulk rate-of-strain tensor is given by 

and the bulk vorticity is 
52, = -;y(o, 0, l ) .  

(2.11) 

(2.12) 

There are neither external forces (e.g. gravity) nor external torques (e.g. magnetic field) 
acting on the particles. In our approach, we model an infinite suspension by 
periodically replicating the basic unit cell and using periodic boundary conditions. 
Each particle is centred in its own periodic cell and interacts only with its neighbours 
in that cell. The basis for this approximation rests with the work of O'Brien (1979). 
Although hydrodynamic interactions are long-ranged, falling off as r-' for force-free 
particles (the particles acting like force dipoles), particles outside the periodic cell in 
total contribute O(1P) to the translational-rotational velocity of the particle at the 
centre of its periodic cell, where 1 is a characteristic dimension of the cell (Bossis & 
Brady 1984; Brady & Bossis 1985). In our case, 1 is the cell length non-dimensionalized 
by the radius of a large sphere. Thus, as the size of the periodic cell increases, the effect 
of particles outside the cell can be made arbitrarily small. Some difficulties arise with 
the use of periodic boundary conditions to simulate the flow of suspensions of 
hydrodynamically interacting particles in three dimensions. The mobility matrix may 
not be positive definite, having negative eigenvalues and inducing imaginary random 
displacements of the particles (Dickinson 1985). The aphysical result derives from not 
properly accounting for the long-range interactions. It can be avoided by using the 
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5 
0.073 
0.273 

0.494 
0.642 
0.836 
0.074 

0.273 
0.495 

Ns 
6 

15 
29 
39 
43 
61 
14 
27 
42 
94 

TABLE 1. Parameters for simulations. Two types of numerical experiments were performed: (1) (see 
above) ~ L X  the size ratio of spheres, A, at 2 or 4 and the area fraction of solids, $a, at 0.503, then vary 
the fraction of small spheres, E ;  (2) (not shown) set 5 = 0.27 and for seven values of $a (0.1 18, 0.236, 
0.354,0.453,0.503,0.55, 0.60) determine the effect of varying the size ratio of spheres from h = 1 to 
h = 4. 

Ewald sum method developed by Brady et al. (1988) which gives rigorously convergent 
particle interactions by correctly describing the 'back flow' of fluid (Batchelor 1972). 
However, when all particles are in the same plane, such convergence difficulties are 
absent, and it is not necessary to explicitly take the back-flow effects into account 
(Bossis & Brady 1990). 

In our simulations, a unit cell consisted of suspensions having 25, 49, 64, or 100 
particles. The number of particles used for a simulation depends on the size ratio of the 
spheres and the fraction of small spheres in a suspension. We sought to make the 
periodic cell sufficiently large in order to reduce the O(1P) error term in the long-range 
interactions. The simulations began with the particles located at random positions in 
a periodic cell. Microstructural changes were calculated in time until steady state was 
reached. The steady state was determined by monitoring the average of the square of 
the x- and y-components of the particle velocities relative to the bulk shear flow. 
Actually, steady state is defined on a time-averaged basis, with small fluctuations 
occurring on short timescales. Steady state was reached in approximately twenty strain 
units (y  = shear rate times time). Examining the x- and y-components of the 
translational part of U -  U", u, - y y  and uy respectively, for monodispersed 
suspensions, we find that Au: = ( U , - T ~ ) ~  x ui for $u d 0.45. As $u increases from 
0.45, AM: > ui, since u, decreases due to hindered mobility caused by the presence of 
large particle clusters while y y  remains fixed and uy increases only slightly. For bimodal 
suspensions, the velocities of both the large and small spheres behave similar to those 
in the monodispersed case. However, for dilute suspensions, we find that the total 
translational velocity of the small and large spheres, u, and uE, respectively, satisfy 
u," > u: due to the larger drag on the large spheres and the lack of large clusters. At high 
$u, say $u 3 0.5, we find that ui x u: since the large and small particles together form 
clusters which move through the fluid as a single entity. 

For the simulations y = 1, and a time step of 2 x lop4 was used. Hence, steady state 
generally occurred after 100000 time steps with the calculations being carried out to a 
total 200000 time steps. The pair-distribution functions, cluster size information and 
relative viscosities reported below were averaged over the last 100000 time steps. To 
determine the statistical errors, simulations under the same conditions of area fraction, 
size ratio, and fraction of small particles were conducted starting from five different 
initial conditions resulting in a total of 1000000 time steps. We report simulation 
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results for area fractions up to 0.6. For more concentrated systems the time step must 
be reduced to accurately follow the particle trajectories. Owing to computational 
limitations, such simulations were not conducted. All calculations were performed in 
double precision on either an IBM 3090, a DEC 5000/200 Workstation, or a Cray 
YMP. The different simulation conditions are given in table 1. This summarizes the size 
ratio of spheres, A, the number of particles, N ,  the number of small spheres, N,, and 
the number of large spheres, N,, the fraction of total solids that were small spheres, 5, 
and the fraction of total area taken by the solids, $u. 

3. Results 
In this section we present dynamic simulation results for both microscopic (pair- 

distribution function and cluster formation) and macroscopic (viscosity) properties of 
bimodal suspensions. Figure 3(a)  shows a typical initial configuration of a bimodal 
suspension having #u = 0.503, 6 = 0.273 and h = 2. At t = 0, the particles are located 
randomly in the periodic cell by first placing the spheres in a regular array and then 
perturbing them a small random distance. The only constraint placed on the random 
displacements is that they not be so large as to cause particles to develop. The dashed 
line shows the boundary of the unit cell. Figure 3(b) depicts an instantaneous 
suspension microstructure after steady state was reached, that is after twenty strain 
units. This figure qualitatively shows that small spheres tend to fit in the spaces among 
the large spheres and that the particles aggregate in clusters. These clusters tend to form 
along the compressive flow direction (0 = 135") and rotate as a solid rod, then break 
up in the extensional flow direction (0 = 45"). This is similar to the behaviour described 
by Brady & Bossis (1988) in monodispersed suspensions. This phenomenon can be 
easily seen by generating a series of computer animations of the particle motions. 
Typically, for such 'movies ', we plot the instantaneous suspension microstructure for 
every 250 time steps and then animate them with a total of 800 frames. Such 
animations show qualitatively that clusters continuously form and break up as 
described above. These animations may be obtained from the authors. 

Prior to calculating the rheology of bimodal suspensions we tested our formulae and 
procedures by computing the relative viscosities of monodispersed suspensions. We 
specialized our equations for the bimodal case to those for particles of the same size. 
Figure 4 compares our simulation results with experiments and with the simulation 
results of Brady & Bossis (1985). Consistent with the simulations, the data are for large 
Pklet numbers (> lo6). The error bars represent the standard deviation derived from 
five different simulations with differing initial conditions. Following Brady & Bossis 
(1 985), all concentrations are normalized by the two-dimensional maximum packing 
fraction, $2 = 0.785, and three-dimensional maximum packing fraction, $2 = 0.605, 
to allow comparison between simulation and experiment. The similarity among the 
three-dimensional experimental results (Rutgers 1962 ; Gadala-Maria 1979 ; Patzold 
1980), the two-dimensional simulation results of Brady & Bossis (1985) and our own 
work is very good. However, as noted by Brady & Bossis (1985), the ratio of the 
maximum packing fractions, $2 to $2, acts as an adjustable parameter. Different 
values shift curves horizontally, but not significantly for reasonable choices of $2 and 
4:. However, the influence is especially large for concentrations near the maximum 
packing. 

For bimodal suspensions, the simulation results for the dependence of the relative 
viscosities on particle size ratio with the fraction of small spheres fixed are given in 
figure 5. For 5 = 0.27, the size ratio affects the relative viscosity, particularly for large 
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(b) 
FIGURE 3. (a) Initial configuration for a randomly distributed bimodal suspension. The total area 
fraction is 0.503 with 5 = 0.27 and h = 2. The dashed lines are the boundaries of the periodic cell. (b )  
An instantaneous suspension microstructure after steady state was reached. Small spheres tend to fit 
in the spaces among the large spheres and the particles form clusters. 

$a. For example, if $a = 0.55, vr decreases as h increases. However, the reduction in 
the relative viscosity of a bimodal suspension becomes significant only when #a > 0.45. 
Error bars in figure 5 represent one standard deviation based upon the average relative 
viscosity calculated for each of the simulations once steady state was achieved. 
Qualitatively, the results in figure 5 show the same trend as the experimental data given 
in figure 1. A similar correspondence between the experiments and the simulations is 
given in figure 6. This depicts the dependence of the relative viscosity upon the fraction 
of small spheres at a fixed area fraction ($a = 0.5). For h fixed, say h = 2, the relative 
viscosity initially decreases as ( increases from zero. It reaches a minimum around 
( = 0.25 and then increases as (+ 1. Similar results are found for h = 4, although here 
we only show simulation results up to E = 0.5. This limitation results from the 
requirements that the size of the periodic cell be large enough to minimize the O(1P) 
errors caused by the particles outside the periodic cell, as mentioned in $2. To achieve 
this, over 150 particles would be needed to accurately simulate a suspension having 
$a = 0.5, ( > 0.5 and h = 4. Although dynamic simulations with 150 particles per unit 
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AJ# or $4l$e 
FIGURE 4. Comparison of the simulation of monodispersed viscosities with experiment and with the 
simulation results of Brady & Bossis (1985). As in Brady & Bossis, all concentrations have been 
normalized by the maximum packing fraction, $id = 0.785 and 4: = 0.605, to compare two- and 
three-dimensional results. The error bars indicate experiment errors and the statistical uncertainties 
in simulations. 0, Brady & Bossis 1985; 0, Gadala-Maria (1979); ., Patzold (1980); A, Rutgers 
(1962); 0,  present work. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

A 
FIGURE 5. Dependence of the relative viscosities, qT, on particle size ratio, A, with fraction of small 

spheres fixed at 5 = 0.27: 0,  monodispersed, h = 1; 0, h = 2;  A, h = 4. 

cell are possible with current workstations, it might take over one week with a 
dedicated unit to actually do the calculations. It is possible to reduce the total number 
of particles and avoid the 0(1-2) errors by using the Ewald summation technique 
(Brady et al. 1988; Brady & Bossis 1988). The hydrodynamic mobility and resistance 
matrices that result from this technique correctly include all far-field non-convergent 
interactions. However, even with the Ewald summation technique, many more 
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particles than we are currently using would be required to greatly extend the range of 
parameters in simulations of bimodal suspensions. For example, for a suspension 
having = 0.55, h = 8 and 6 = 0.8, at least 256 small particles and one large particle 
are needed. 

A comparison of the results for the two-dimensional simulations with experiments 
can only be undertaken if we account for the difference in the maximum packing 
between the two- and three-dimensional cases (Brady & Bossis 1985). For example, for 
monodispersed suspensions, maximum close packing for a three-dimensional lattice is 
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Symbols 
Reference h 5 $2 or $2 (figure 7) 

- Chong et al. (1971) 2 0.25 0.654 a 
3.2 0.25 0.696 0 

0 7.2 0.25 0.757 - 

Poslinski et al. (1988) 5.2 0.30 0.74 X 

5.2 0.50 0.72 X 

Storms et al. (1990) 2.31 0.5 0.635 
El 2.96 0.5 0.657 - 

4.1 0.5 0.684 H 
0 4.93 0.5 0.696 - 

Shapiro & Probstein (1992) 4 0.5 0.597 + 
Present work 2 0.27 0.8 A 

4 0.27 0.82 
Chang (1 992) 2.5 0.25 0.701 0 
(Experiment) 7.5 0.25 0.76 0 

13.75 0.25 0.81 0 
2.5 0.5 0.695 0 
7.5 0.5 0.74 0 

13.75 0.5 0.77 0 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

TABLE 2. Values of $2 and 4: for bimodal suspensions. 

0.74 whereas in two-dimensions an area loading up to 0.9 can be achieved. In the case 
of the simulations presented in figure 4, we used values suggested by Brady & Bossis 
(1985) to normalize $u and $,. For bimodal suspensions, values of $2 are available in 
the literature (Chong et al. 1971 ; Poslinski et al. 1988). These values are generally 
determined experimentally. The two-dimensional close-packing values can be found in 
the work of Kauseh, Fesko & Tschoegl(l971) who determined the maximum packing 
fractions for randomly distributed bimodal distributions of circles in a plane. The 
results from these studies for both the two- and three-dimensional cases are generally 
consistent with other work (McGeary 1961; Lee 1970; Patton 1979; Visscher & 
Bolsterli 1972). 

Figure 7 shows the comparison between the simulation results for the relative 
viscosity and experimental results in terms of $J$: and $,/$2. The actual maximum- 
packing values used in obtaining the curve in figure 7 are given in table 2. In the case 
of the experimental data, the values which are used are those given by the investigators. 
In normalizing the simulation results, we have estimated $? using the work of Kauseh 
et al. (1971). The agreement between the simulation and experimental results in figure 
7 is remarkable. All of the dependence of the relative viscosity upon h and 6 is through 
the dependence of the maximum packing fraction upon these geometrical parameters. 
Hence, if the information on the maximum packing as functions of h and (Storms 
et al. 1990; Shapiro & Probstein 1992) is coupled with the master curve in figure 7, the 
relative viscosity of a bimodal suspension can be determined. Although the simulation 
results are only for values of up to 0.75, the calculation of the relative viscosities 
for higher solid concentrations is feasible. However as the concentration increases, 
numerical errors can cause particles to overlap in going from one time step to the next. 
This can be overcome by reducing the time step, which might be very costly. 

We now turn our attention to the microstructure of the suspensions to ascertain the 
connection between the reduction in the relative viscosity for bimodal suspensions and 
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FIGURE 8. Comparison of the radial dependence of the angle-averaged pair-distribution function 
( g ( r ) ) ,  with data from Brady & Bossis (1988) at = 0.4 for monodispersed suspensions. To obtain 
(g(r ) )# ,  a simple &average was used with four values of 0 :  9", 27", 99", and 171". The dimensionless 
sphere diameter is 2. A, Present work; 0, Brady & Bossis (1988). 

the microrheological properties. The pair-distribution function, g(r,  0), is frequently 
used as a fundamental measure of the microstructure (Reed & Gubbins 1973; Bossis 
& Brady 1984). This is defined as the probability of finding a particle centre at r and 
8 relative to a particle located at r = 0, divided by the number density. To calculate 
g(r,  8) for our two-dimensional simulations, we examine the region 8 - A0 to 8 + A0 and 
r - Ar to r + Ar. Here, the number of particles with centres in the region is found and 
divided by the area of the region times the number density to obtain g(r,8). This 
process is repeated for various values of r and 8 to determine both the angular and 
radial structure of the suspension. The number density is simply N / A ,  where N is the 
total number of spheres and A is the area of the periodic cell. 

= 
0.4 and compared with the results given by Brady & Bossis (1988). This comparison is 
shown in figure 8 in terms of (g(r))o, which is a simple &average, using four different 
angles: 9", 27", 99", and 171" (Bossis & Brady 1984). The excellent agreement further 
validates our simulation methodology. Figure 8 shows that a sphere of dimensionless 
diameter two is most likely to find a nearly touching neighbour. There is some 
likelihood, although much lower, of finding a sphere at r = 4, indicating the formation 
of linear chains of particles. 

= 0.50 and 
6 = 0.27 in both cases but for different size ratios, h = 2 and 4. Figure 9(a) demonstrates 
that for a size ratio of 2 the large spheres have higher probabilities of finding small 
spheres as nearest neighbours (the first peak) than large spheres (the second peak). 
Some small-large and small-small sphere doublets are also formed adjoining the 
reference large particle. For example, near a large sphere, there is a high probability of 
finding a small sphere at r = 3 and a large sphere at r = 6 (small-large doublet). Figure 
9(b), which shows (g(r))o for the small spheres in a h = 2 suspension, demonstrates 
that a small sphere has a higher probability of finding a large sphere as its nearest 
neighbour (the second peak) rather than another small sphere (the first peak). Figures 

Initial results for g(r, 8) were obtained for monodispersed suspensions having 

Figure 9 presents two sets of (g(r))@ for bimodal suspensions with 
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FIGURE 9. The radial dependence of the angle-averaged pair-distribution function, (g(r)) ,  for 
bimodal suspensions having $a = 0.50 and E = 0.27. (a) (g ( r ) ) ,  relative to a large sphere for h = 2; 
(b )  (g ( r ) ) ,  relative to a small sphere for h = 2; (c) ( g ( r ) ) ,  relative to a large sphere for h = 4; (d )  
(g ( r ) ) ,  relative to a small sphere for h = 4. 

9(c) and 9(d) both show similar data for a suspension in which h = 4. Here large and 
small spheres are found to have higher probabilities of finding small spheres as their 
nearest neighbours (the first peaks). Since there are many more small spheres than large 
spheres (see table 1) this might be expected. It is worth noting, however, that after 
large-small and small-small pairs, the next highest probabilities fall to large-large and 
small-large pairs. From all of the data in figure 9 one can conclude that the particle 
pairs (large-large, large-small, or small-small spheres) are essentially ' touching I, 
separated only by lubrication forces. Further, three or more spheres generally form 
linear chains. 

The pair-distribution function offers one measure of the microstructure of 
suspensions, but it is neither the only nor necessarily the most important one. Brady 
& Bossis (1988) have found that the formation of larger aggregates or clusters of 
particles is far more important in determining the macroscopic properties of 
suspensions. In monodispersed suspensions, the presence of large clusters can be 
directly linked to high viscosities (Brady & Bossis 1988; Bossis & Brady 1989). Further, 
Bossis, Meunier & Brady (1991) found that for fractal aggregates of force-free particles 
held together by hydrodynamic lubrication forces, the stress grows as the number of 
particles in the aggregates rather than as the cube of the radius of gyration. Although 
not a system of fractal aggregates, we hypothesized that the reduction of the relative 
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FIGURE 10. Distribution of particle cluster sizes for suspensions of spheres. For monodispersed 
suspensions, as the concentration is increased the cluster sizes increase. At a fixed concentration, the 
presence of small particles decreases the cluster sizes. 0,  Bossis & Brady (1989) h = 1, $a = 0.45; 
present study: 0, A = 1, $Q = 0.45; ., h = 1 ,  $Q = 0.5; A, $a = 0.5, h = 2, E =  0.07; m, $a = 0.5, 
h=4,&=0.07;  +,$,=0.5,h=2,[=0.25. 

viscosities for bimodal suspensions as compared with monodispersed suspensions is 
also related to the influence of cluster size in the suspensions. Figure 10 shows the 
distribution of cluster sizes in monodispersed suspensions and in bimodal suspensions 
for various values of A and E. This figure presents the percentage of spheres belonging 
to clusters which contain at least N spheres as a function of the size (in terms of the 
number of spheres) of each cluster. Following Bossis & Brady (1989), we have chosen 
the non-dimensionalized length as for the separation distance which defines that 
two spheres belong to the same cluster. We first compared our results for 
monodispersed suspensions with the results of Bossis & Brady (1989) for #a = 0.45 and 
found good agreement. To establish a baseline for bimodal suspensions, we performed 
a similar analysis at = 0.5 for a monodispersed suspension. Then calculations were 
undertaken for a series of bimodal suspensions. As figure 10 shows, the monodispersed 
suspension has a higher percentage of spheres belonging to large clusters than bimodal 
suspensions. Comparing the bimodal suspensions, we see that a suspension having 
h = 2 and 6 = 0.07 has a higher percentage of spheres belonging to large clusters than 
either a suspension having h = 2 and 6 = 0.27 or h = 4 and f = 0.07. This indicates 
that the presence of smaller particles tends to reduce average cluster size in a 
suspension and hence correlates with the dependence of the relative viscosity of 
bimodal suspensions upon h and f ,  as shown in figures 5 and 6 .  

Figure 11 shows the comparison of the ratio of the number of small spheres to the 
number of large spheres in clusters as a function of the ratio of the number of small 
spheres to the number of large spheres in the overall suspension. These data are for 

= 0.50 and include all size ratios and all values off; used in the simulations. Two 
sizes of clusters were considered: those having 10 and 20 particles. The particle size 
distribution in the clusters is approximately linear with respect to the overall size 
distribution. Hence, there is no preference for particles of a particular size to form 
clusters and effect size segregation during simple shear. 
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ratio of the number of small spheres to that of large spheres in the overall suspension: 0, cluster size 
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The cluster size distribution can also be measured through the number-averaged 
mean cluster size 

S S 

where n, is the number of clusters containing s spheres. For a fmed fraction of small 
particles, 6 = 0.27, figure 12 shows that at high concentrations (say, > 0.5) the mean 
cluster size (s), decreases as the size ratio of spheres increases. This is exactly the same 
trend as found for the viscosity, as shown in figure 5 .  The similarity between the 
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FIGURE 14. Dependence of the relative viscosity, T ~ ,  upon the mean cluster size, (s),. 
area fraction, $a, range from 0.12 to 0.60 with k = 0.27 and h = 1,2  and 4; and at $a = 
from 0.073 to 0.836 for h = 1, 2 and 4. 

Values of the 
0.50,t ranges 

behaviour of !qr and (s), is further seen in figure 13 where the relationship between 
(s), and the fraction of small spheres at a fixed area fraction, = 0.5, is shown. For 
a fixed size ratio, e.g. h = 2, {s), decreases as 6 increases from zero. After reaching a 
minimum value, the viscosity increases as 6 4  1. Again, this is the same trend as that 
found for the viscosity, as shown in figure 6.  

By combining the dependencies of r]7 and (s), upon A and t, given in figures 5,  6 ,  
12 and 13, we can determine the relationship between qr and (s),, which is given in 
figure 14. The relative viscosity scales linearly with (s), for both small and large mean 
cluster sizes, but there is a distinct break in the actual linear form around (s), = 6. 
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15. Probability, P, versus area fraction, with the fraction of small spheres h e d  at 0,  
monodispersed, h = 1; [7, h = 2; +, h = 4. The trend shown here is similar to that found for the 
relative viscosity, see figure 5. 

When $a -+ 1, that is (s),+ 1, y r  tends towards 1 with the actual least-squares fit 
providing y r  = 1.06(s),+0.067, for (s), < 6. For (s), > 6, y r  = 5.46(s),-26.3. 
Since the conditions that provide (s), > 6 appear at $a >, 0.5 for h = 1, $u 2 0.55 for 
h = 2 and $u 2 0.6 for h = 4 (see figure 12), we believe that the transition point 
corresponds to the onset of percolation. It is possible that large clusters bridge the 
periodic cell in such concentrated suspensions. Indeed, if we determine the size of the 
largest cluster in our suspensions, we find that for h = 1, 2 and 4, the largest cluster 
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spans the unit cell for q5u 0.5, 0.55 and 0.6, respectively. Experimentally, one would 
also expect percolation to occur in highly concentrated suspensions undergoing simple 
shear (except in the depletion layer near the walls) due to the hydrodynamic lubrication 
forces between particles in the clusters. 

Another measure of cluster formation is the probability P = N + / N ,  where Nf is the 
number of spheres which belong to the biggest cluster and N is the total number of 
spheres in the simulation. In figure 15 we show that at high concentration (say q5u = 
0.50) with 6 fixed at 0.27, the probability P decreases as the size ratio of spheres 
increases. Again, these curves show the same trend as the viscosity curves shown in 
figure 5. In figure 16, we see that as size ratio of spheres is fixed (say h = 2) and the area 
fraction of solids is also fixed at 0.50, the probability P has the same trend with 6 as 
the viscosity curve shown in figure 6. Again, this demonstrates that the reduction of 
relative viscosities in bimodal suspensions is linked to the reduction of cluster size in 
the suspensions. 

4. Conclusions 
In this paper we have shown that Stokesian dynamics can be extended to compute 

both microstructural dynamics and macroscopic rheological properties of bimodal 
suspensions of hydrodynamically interacting spherical particles. At the microstructural 
level, we determined the pair-distribution functions and cluster formation; the 
macroscopic property was the relative viscosity. The method we described in $2 
captures the essential physics of the hydrodynamic interactions in a suspension of 
unequal-sized spheres. Both the dominant far-field many-body interactions and the 
near-field lubrication forces are explicitly included. We have used periodic boundary 
conditions to represent an infinite suspension. All of our simulations used a monolayer 
of spheres to minimize the computation costs while preserving the physics in the plane 
of shear. The good agreement between simulations and experiments for the relative 
viscosity indicate that Stokesian dynamics is capable of excellent quantitative predictive 
ability for bimodally distributed suspensions of spheres of varying volume fraction and 
size ratio. It also provides definitive evidence that the maximum packing fraction 
appropriately scales the overall volume fraction so as to collapse the relative viscosity 
dependency upon the normalized volume fraction to a single master curve for bimodal 
suspension. 

Cluster formation, a direct result of the hydrodynamic lubrication forces that keep 
particle surfaces from touching, correlates with the lower viscosity measured for 
bimodal suspensions relative to a monodispersed suspension at the same particle 
loading. The results in $ 3  show that the viscosity reduction for bimodal suspensions is 
directly linked to the influence of particle size distribution on the average cluster size 
in a suspension. 

We have only considered hydrodynamic interactions among particles, but the 
extension to include interparticle forces and Brownian motion is straightforward 
(Bossis & Brady 1984,1987,1989; Brady & Bossis 1985; Bossis, Brady & Mathis 1988). 
For colloidal dispersions of unequal-sized spherical particles, in addition to q5u (or r ~ 5 ~ ) ,  

h and 6, the absolute size of the particles also plays an important role in determining 
the flow behaviour of the suspensions (Sengun & Probstein 1989a, b ;  Hoffman 1992). 
In particular, the data of Hoffman (1992) suggest that the effects of both h and 6 can 
be dominated by effects due to the absolute particle size. Future work will be aimed at 
including the effects of interparticle and Brownian forces for bimodal suspensions. We 
also expect, either by increasing our computational resources or developing algorithms 
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utilizing the Ewald summation technique, to extend our results to larger size ratios, such 
as h = 8, which will allow the smaller spheres to fit among the larger ones more easily. 

This work was supported by the Chemical Systems Division (CSD) of United 
Technologies through the efforts of Dr R. R. Miller. The authors wish to thank 
Professor John Brady for his help in initiating this study. Professors David Jeffrey and 
Sangtae Kim graciously allowed us to see early versions of manuscripts that also 
became central to our research. 

Appendix: Elements of the grand mobility matrix for unequal-sized 
(bimodal) spheres 

The grand mobility matrix M" in (2.4) written in terms of identical elements using 
the notation of Durlofsky et al. (1987) (also Jeffrey & Onishi 1984 and Jeffrey 1992) and 
of this paper. We non-dimensionalized all lengths by a characteristic length e, and the 
individual matrices a, b, etc. by 67c,uen, where n = 1 for a, 2 for b and g, and 3 for the 
remaining elements. We now proceed to write the elements of Ma. Letting r denote the 
centreto-centre separation of spheres 01 and /3 and e, = r i / r ,  the unit vector joining 01 
to p, the symmetry of the two-sphere geometry enables us to write 

af = xz) e, e, + y$(S,, - e, e,), 

b# = &%jk ek, 

Gfl = x:) e, ej + Y:&4, - e, e,), 
d k  = ~ ~ ( e , e , - ~ , 1 ) e k + y ~ e , ~ ~ k + e , 6 , k - 2 e , e , e , ) ,  

h$k = $ d e ,  '5kZ e Z  + ' j  ' i k l  

mffk, = !jx$(ei e, - isij) (e, e, - fa,,) 
+ ty;(e, S,, ek + e, a,, e, + e, a,, e, + ej 
+ :z$(S,, S,, + 8jk Si, - Sij 
+ e, ej ek e, - ei S,, e, - e, S,, ek - e, 8jk e, - e, 8ik el). 

e, - 4ei ej ek e,) 
+ e, ej S,, + Sii e, e, 

Consistent with the approximation in (2- 1 1) and (2.19, (2.16), the scalar mobility 
functions are 

ql = yyl = e /a ,  xf2 = el = $ / r  -+(a2 + b2) e/r3, 
xf2 = yi2 = e /b ,  y:2 = yf1 = i e / r  +f(a2 + b2) e/r3, 
y:l = -yi2 = 0, y:2 = -yil = -ie2/r2, 

xc -xc - 

xi2 = yi2 = +'/b3, yE2 = yil = -ge3/r3, 

g2 = ~e2/r2-~b2e2/r4-&2e2/r4, 
f12 = ib2e2/r4 +#e2/lr", y;l = -3?e2/r4 -&b2e2/r4, 

x;l = yy1 +3/& 

xg --xz2=o, yg -- g - 0  11 - 11 - Y 2 2  - 7 

12 - 21 - 8 / r 3 ,  

xh  = -$e2/r2+pe2/r4 +gb2e2/r4, 

y h  11 - - ya2 h = 0, y!2 = ytl = -ie3/r3, 
X; = Y E  = ZE =+?/a3, X E  = Y ;  = 2; = A  1oe /b3, 
XE = XR = -g3/r3 + ?(a2 + b2) e3/r6, y l =  
zE = zg = $(a2 + b2) e3/r5. 

= ie3/r3 -?(a2 + b2) e3/r5, 
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The corresponding lubrication formulae are written by defining 

C. Chang and R.  L. Powell 

d = r -a -b / t (a+h)  = s - 2 ,  h = h/a  

and can be found in Jeffrey & Onishi (1984), Kim & Karrila (1991) and Jeffrey (1992). 
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